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1 On Suslin-free forcings, finishing the consistency of MA + ¬CH +
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2 The question of forcing chains of functions fξ : ω1 → ω1 increasing
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Motivation: We will sketch the proof of the relative consistency
(assuming the existence of a strongly inaccessible cardinal) of MA +
¬CH + There is no Kurepa tree

Proof.
Preparatory stage

1 First (using an inaccessible cardinal) obtain the consistency of CH
+ There is no Kurepa tree

2 And moreover for any c.c.c. forcing P of cardinality ω1 P ‖− There
is no Kurepa tree.

3 Assume: no c.c.c. forcing P of cardinality ω1 forces that there is
Kurepa tree
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Proof.
Main stage

1 Iterate all c.c.c forcings of cardinality ω1 which do not add
uncountable branches through ω1-trees

2 Prove that if P is c.c.c. and adds an uncountable branch through
an ω1-tree, then there is Q which is c.c.c., does not add
uncountable branches through ω1-trees and

Q ‖−P̌ is not c.c.c.

3 Prove that if for each β < α we have Pβ ‖−Q̇β does not add an
uncountable branches through ω1-trees, then Pα has this property
as well as for each β < α we have that Pβ forces that P[β,α) has
this property.
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Theorem
Suppose that A is a complete c.c.c. Boolean algebra and let T be a
tree of height ω1. If A∗ adds a new branch through T , then A∗ contains
a reversed Souslin tree. In particular P2 is not c.c.c.

Proof.

1 Consider a downward closed subtree T ′ ⊆ T of elements t ∈ T
such that there is p ∈ A∗ such that p ‖−ť ∈ ḃ

2 There is an order inversing injection f : T ′ → A∗ defined by
f (t) = [̌t ∈ ḃ] such that incomparable elements in T ′ are send to
incompatible conditions in A∗

3 Since A∗ is c.c.c. the image f [T ′] is a c.c.c reveresed tree.
4 As P ‖−ḃ 6= č for any branch c of T , we conclude that f [T ′] has

height ω1 and so is a Suslin tree.
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2 There is an order inversing injection f : T ′ → A∗ defined by
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Definition
Suppose T is a tree. Then PT consists of finite functions
f : dom(f )→ N such that dom(f ) ∈ [T ]<ω and f−1{n} are antichains.

Theorem
If T has no uncountable branches then Pn

T is c.c.c. for each n ∈ N. In
particular, PT does not add new uncountable branches.

Proof.

1 Let (fα1 , ..., f
α
n ) be elements of Pn which form an antichain for

α < ω1

2 Let aα = dom(fα1 ) ∪ ... ∪ dom(fαn ), assume they form a ∆-system
3 May w.l.o.g. assume that there are isomorphims πα,β : aα → aβ

which lifts up to isomorphims of (fα1 , ..., f
α
n ) and (f β1 , ..., f

β
n )
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1 Let (fα1 , ..., f
α
n ) be a “model” of such conditions with domain a and

isomorphisms πα : a→ aα

2 Fix an ultrafilter u on ω1 which does not contain any countable set
3 There is Y ∈ u such that for α ∈ Y there are t , s ∈ a such that

Xα = {β ∈ ω1 : πα(t) ≤ πβ(s)} ∈ u

4 If α1, α2 ∈ Y and β ∈ Xα1 ∩Xα1 , then πα1(t), πα2(t),≤ πβ(s) and so
πα1(t), πα2(t) are compatible, hence we get an uncountable
branch through T , a contradiction.
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Theorem
If P is c.c.c and adds a new branch through an ω1-tree, then there is a
c.c.c forcing Q that does not add a new branch through any ω1-tree and

Q ‖−P̌ is not c.c.c..

It is possible to add Martin’s axiom without adding new branches
through ω1-trees which appear in intermediate models.

Theorem
(Devlin) It is consistent that there is no Kurepa tree and MA+¬CH
holds.
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Theorem
(U. Abraham; S. Todorcevic) ”There is a first countable S-space” is
consistent with MA+¬CH

Theorem
(P.K.) ”There is a countably tight compact space with no point of
countable character” is consistent with MA+¬CH.
It is consistent that there is are compact spaces K ,L and continuous
onto map f : K → L such that K is first countable and L has no point of
countable character.
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Definition
Let f ,g : ω1 → ω1

“ =f ,g ” = {ξ : f (ξ) = g(ξ)}

“ >f ,g ” = {ξ : f (ξ) > g(ξ)}

We say that f ≤∗ g if and only if >f ,g is finite and =f ,g is
co-uncountable. A ≤∗-chain is called strong chain.

Definition
We say that (Xα : α < β) is a strong chain of subsets of ω1 iff for each
α1 < α2 < β we have

|Xα1 \ Xα2 | < ω & |Xα2 \ Xα1 | > ω.

Fact: The existence of a strong chain of functions ω1 → ω1 of length κ
is equivalent to the existence of a strong chain of subsets of ω1 of
length κ.
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Theorem
CH or CC (Chang’s Conjecture) imply that there are no strong chains.
So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.
Let (Xα : α < ω2) be a strong chain of subsets of ω1.

1 There is γ < ω1 such that |{Xα ∩ γ : α ∈ ω2}| = ω2

2 There is C ⊆ ω2, |C| = ω2 and (γξ)ξ<ω1 such that
Xα ∩ [γξ, γξ+1) ⊂ Xβ ∩ [γξ, γξ+1) for all α < β, α, β ∈ C and ξ < ω1

3 CC implies that for any c : [ω2]2 → ω1 there is an uncountable
A ⊆ ω2 and β ∈ ω1 such that c[[A]2] ⊆ β.
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2 There is C ⊆ ω2, |C| = ω2 and (γξ)ξ<ω1 such that
Xα ∩ [γξ, γξ+1) ⊂ Xβ ∩ [γξ, γξ+1) for all α < β, α, β ∈ C and ξ < ω1

3 CC implies that for any c : [ω2]2 → ω1 there is an uncountable
A ⊆ ω2 and β ∈ ω1 such that c[[A]2] ⊆ β.
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Forcing for adding strong chain: First add appropriate c : [ω2]2 → ω1 by
a σ-closed forcing. Then force with P consisting of p = (ap,bp, fp)
where

1 ap ∈ [ω2]<ω, bp ∈ [ω1]<ω, Fp = {f p
α : α ∈ ap} and f p

α : bp → 2,
2 ∀α1, α2 ∈ ap >f p

α1,α2
∩bp ⊆ c(α1, α2)

3 p ≤ q iff ap ⊇ aq, bp ⊇ bq, f p
α ⊇ f q

α for α ∈ aq and
∀α1, α2 ∈ aq >f p

α1,α2
∩bp =>f q

α1,α2
∩bq

We will put Xα = {β : f p
α(β) = 1, p ∈ G} for a P-generic G.

Piotr Koszmider () Iterated forcing Hejnice, 09 12 / 16



Forcing for adding strong chain: First add appropriate c : [ω2]2 → ω1 by
a σ-closed forcing. Then force with P consisting of p = (ap,bp, fp)
where

1 ap ∈ [ω2]<ω, bp ∈ [ω1]<ω, Fp = {f p
α : α ∈ ap} and f p

α : bp → 2,

2 ∀α1, α2 ∈ ap >f p
α1,α2

∩bp ⊆ c(α1, α2)

3 p ≤ q iff ap ⊇ aq, bp ⊇ bq, f p
α ⊇ f q

α for α ∈ aq and
∀α1, α2 ∈ aq >f p

α1,α2
∩bp =>f q

α1,α2
∩bq

We will put Xα = {β : f p
α(β) = 1, p ∈ G} for a P-generic G.

Piotr Koszmider () Iterated forcing Hejnice, 09 12 / 16



Forcing for adding strong chain: First add appropriate c : [ω2]2 → ω1 by
a σ-closed forcing. Then force with P consisting of p = (ap,bp, fp)
where

1 ap ∈ [ω2]<ω, bp ∈ [ω1]<ω, Fp = {f p
α : α ∈ ap} and f p

α : bp → 2,
2 ∀α1, α2 ∈ ap >f p

α1,α2
∩bp ⊆ c(α1, α2)

3 p ≤ q iff ap ⊇ aq, bp ⊇ bq, f p
α ⊇ f q

α for α ∈ aq and
∀α1, α2 ∈ aq >f p

α1,α2
∩bp =>f q

α1,α2
∩bq

We will put Xα = {β : f p
α(β) = 1, p ∈ G} for a P-generic G.

Piotr Koszmider () Iterated forcing Hejnice, 09 12 / 16



Forcing for adding strong chain: First add appropriate c : [ω2]2 → ω1 by
a σ-closed forcing. Then force with P consisting of p = (ap,bp, fp)
where

1 ap ∈ [ω2]<ω, bp ∈ [ω1]<ω, Fp = {f p
α : α ∈ ap} and f p

α : bp → 2,
2 ∀α1, α2 ∈ ap >f p

α1,α2
∩bp ⊆ c(α1, α2)

3 p ≤ q iff ap ⊇ aq, bp ⊇ bq, f p
α ⊇ f q

α for α ∈ aq and
∀α1, α2 ∈ aq >f p

α1,α2
∩bp =>f q

α1,α2
∩bq

We will put Xα = {β : f p
α(β) = 1, p ∈ G} for a P-generic G.

Piotr Koszmider () Iterated forcing Hejnice, 09 12 / 16



Forcing for adding strong chain: First add appropriate c : [ω2]2 → ω1 by
a σ-closed forcing. Then force with P consisting of p = (ap,bp, fp)
where

1 ap ∈ [ω2]<ω, bp ∈ [ω1]<ω, Fp = {f p
α : α ∈ ap} and f p

α : bp → 2,
2 ∀α1, α2 ∈ ap >f p

α1,α2
∩bp ⊆ c(α1, α2)

3 p ≤ q iff ap ⊇ aq, bp ⊇ bq, f p
α ⊇ f q

α for α ∈ aq and
∀α1, α2 ∈ aq >f p

α1,α2
∩bp =>f q

α1,α2
∩bq

We will put Xα = {β : f p
α(β) = 1, p ∈ G} for a P-generic G.

Piotr Koszmider () Iterated forcing Hejnice, 09 12 / 16



Forcing for adding strong chain: First add appropriate c : [ω2]2 → ω1 by
a σ-closed forcing. Then force with P consisting of p = (ap,bp, fp)
where

1 ap ∈ [ω2]<ω, bp ∈ [ω1]<ω, Fp = {f p
α : α ∈ ap} and f p

α : bp → 2,
2 ∀α1, α2 ∈ ap >f p

α1,α2
∩bp ⊆ c(α1, α2)

3 p ≤ q iff ap ⊇ aq, bp ⊇ bq, f p
α ⊇ f q

α for α ∈ aq and
∀α1, α2 ∈ aq >f p

α1,α2
∩bp =>f q

α1,α2
∩bq

We will put Xα = {β : f p
α(β) = 1, p ∈ G} for a P-generic G.

Piotr Koszmider () Iterated forcing Hejnice, 09 12 / 16



Theorem
(Jensen) Square implies that there is a c.c.c. forcing which adds a
Kurepa tree.

Theorem
(Baumgartner, Shelah) It is consistent that there is a scattered
compact space of Cantor-Bendixon height ω2 and Cantor-Bendixon
width ω.

Theorem
(P.K.) It is consistent that there is a strong chain of subsets of ω1 of
length ω2

Theorem
(P.K.) It is consistent that there is a WCG Banach spaces where all
operators are in the sequential closure of the linear span of projections
from a projectional resolution of the identity
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Definition
Let f ,g : ω1 → ω1

≥f ,g= {ξ : f (ξ) ≥ g(ξ)}

We say that f � g if and only if ≥f ,g is finite. A�-chain is called very
strong chain.

Theorem
(CH) there is no c.c.c. forcing which adds a very strong chain. So it
cannot be added by an iteration of a σ-closed followed by a c.c.c.
forcing.
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Forcing by conditions p = (ap,bp,Fp,Ap), where

1 0 ∈ ap ∈ [ω2]<ω,bp ∈ [ω1]<ω, Fp = {fαp : α ∈ ap}, Ap ∈ [F ]<ω,
and fαp : bp → ω1, and for each β ∈ bp we have f 0

p (β) = 0

2 ∀β ∈ bp∀α ∈ ap fαp (β) < Φ(β)

3 ∀β ∈ bp∀α1 < α2;α1, α2 ∈ ap, if dAp,β(α1, α2) 6= 0, then

fα2
p (β) ≥ fα1

p (β) + dAp,β(α1, α2)

4 p ≤ q iff ap ⊇ aq, bp ⊇ bq, Ap ⊇ Aq, fαp ⊇ fαq for all α ∈ aq and
5 ∀β ∈ bp − bq∀α1 < α2;α1, α2 ∈ aq fα2

p (β) > fα1
p (β)
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Theorem
(P.K.) It is consistent that here is a very strong chain of functions from
ω1 into ω1 of length ω2

Theorem
(C. Brech, P.K.) It is consistent that there is a compact hereditarily
separable scattered compact space of Cantor-Bendixon height ω2 and
Cantor-Bendixon width ω.

It is consistent that there is a Banach space
of density ω2 with no uncountable biorthogonal system.
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