Examples concerning iterated forcing II

Piotr Koszmider, piotr.koszmider@gmail.com

Piotr Koszmider ()

Iterated forcing

Hejnice, 09 1 / 16

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Piotr	Koszmider	()

996

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

• On Suslin-free forcings, finishing the consistency of MA + \neg CH + There is no Kurepa tree

DQC

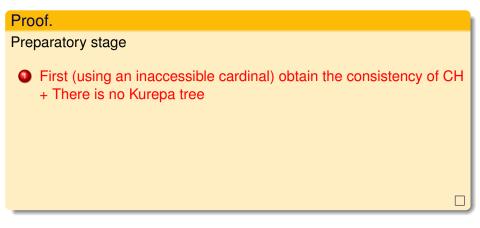
- On Suslin-free forcings, finishing the consistency of MA + ¬CH + There is no Kurepa tree
- **2** The question of forcing chains of functions $f_{\xi} : \omega_1 \to \omega_1$ increasing modulo finite sets

Proof.

Preparatory stage

Dista	Zara musical at a	- A
Plotr	Koszmide	r ()

< ロ ト < 同 ト < 三 ト < 三 ト



I > <
 I >
 I

Proof.

Preparatory stage

- First (using an inaccessible cardinal) obtain the consistency of CH
 + There is no Kurepa tree
- ② And moreover for any c.c.c. forcing *P* of cardinality ω₁ *P* |⊢ There is no Kurepa tree.

∃ ⊳

Image: A matrix and a matrix

Proof.

Preparatory stage

- First (using an inaccessible cardinal) obtain the consistency of CH
 + There is no Kurepa tree
- ② And moreover for any c.c.c. forcing *P* of cardinality ω₁ *P* |⊢ There is no Kurepa tree.
- Solution Assume: no c.c.c. forcing *P* of cardinality ω_1 forces that there is Kurepa tree

Main stage

Piotr	Koszmider	()

990

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Main stage

Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through ω_1 -trees

590

<ロト < 回ト < 回ト < 回ト

Main stage

- Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through ω_1 -trees
- Prove that if *P* is c.c.c. and adds an uncountable branch through an ω_1 -tree, then there is *Q* which is c.c.c., does not add uncountable branches through ω_1 -trees and

 $Q \parallel \check{P}$ is not c.c.c.

Main stage

- Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through ω_1 -trees
- Prove that if *P* is c.c.c. and adds an uncountable branch through an ω_1 -tree, then there is *Q* which is c.c.c., does not add uncountable branches through ω_1 -trees and

 $Q \Vdash \check{P}$ is not c.c.c.

Solution Prove that if for each $\beta < \alpha$ we have $P_{\beta} \models Q_{\beta}$ does not add an uncountable branches through ω_1 -trees, then P_{α} has this property as well as for each $\beta < \alpha$ we have that P_{β} forces that $P_{[\beta,\alpha)}$ has this property.

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_1 . If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P² is not c.c.c.

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_1 . If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P² is not c.c.c.

Proof.

Piotr	Koszmider	()

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_1 . If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P² is not c.c.c.

Proof.

Consider a downward closed subtree T' ⊆ T of elements t ∈ T such that there is p ∈ A* such that p ||−t ∈ b

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_1 . If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P² is not c.c.c.

Proof.

- Consider a downward closed subtree T' ⊆ T of elements t ∈ T such that there is p ∈ A* such that p ||−t ∈ b
- Provide the image of the image. The image of the imag

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_1 . If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P² is not c.c.c.

Proof.

- Consider a downward closed subtree T' ⊆ T of elements t ∈ T such that there is p ∈ A* such that p ||−t ∈ b
- Provide the image of the image. The image of the imag
- Since A^* is c.c.c. the image f[T'] is a c.c.c reveresed tree.

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_1 . If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P² is not c.c.c.

Proof.

- Consider a downward closed subtree T' ⊆ T of elements t ∈ T such that there is p ∈ A* such that p ||−t ∈ b
- Provide the image of the image. The image of the imag
- Since A^* is c.c.c. the image f[T'] is a c.c.c reveresed tree.
- As $P \Vdash \dot{b} \neq \check{c}$ for any branch *c* of *T*, we conclude that f[T'] has height ω_1 and so is a Suslin tree.

Suppose *T* is a tree. Then P_T consists of finite functions $f : dom(f) \to N$ such that $dom(f) \in [T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Suppose *T* is a tree. Then P_T consists of finite functions $f : dom(f) \to N$ such that $dom(f) \in [T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Theorem

If T has no uncountable branches then P_T^n is c.c.c. for each $n \in N$. In particular, P_T does not add new uncountable branches.

Suppose *T* is a tree. Then P_T consists of finite functions $f : dom(f) \to N$ such that $dom(f) \in [T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Theorem

If T has no uncountable branches then P_T^n is c.c.c. for each $n \in N$. In particular, P_T does not add new uncountable branches.

Proof.

• Let $(f_1^{\alpha}, ..., f_n^{\alpha})$ be elements of P^n which form an antichain for $\alpha < \omega_1$

Suppose *T* is a tree. Then P_T consists of finite functions $f : dom(f) \to N$ such that $dom(f) \in [T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Theorem

If T has no uncountable branches then P_T^n is c.c.c. for each $n \in N$. In particular, P_T does not add new uncountable branches.

Proof.

• Let $(f_1^{\alpha}, ..., f_n^{\alpha})$ be elements of P^n which form an antichain for $\alpha < \omega_1$

2 Let $a_{\alpha} = dom(f_1^{\alpha}) \cup ... \cup dom(f_n^{\alpha})$, assume they form a Δ -system

Suppose *T* is a tree. Then P_T consists of finite functions $f : dom(f) \to N$ such that $dom(f) \in [T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Theorem

If T has no uncountable branches then P_T^n is c.c.c. for each $n \in N$. In particular, P_T does not add new uncountable branches.

Proof.

- Let $(f_1^{\alpha}, ..., f_n^{\alpha})$ be elements of P^n which form an antichain for $\alpha < \omega_1$
- ② Let $a_{\alpha} = dom(f_1^{\alpha}) \cup ... \cup dom(f_n^{\alpha})$, assume they form a ∆-system
- Solution May w.l.o.g. assume that there are isomorphims $\pi_{\alpha,\beta} : a_{\alpha} \to a_{\beta}$ which lifts up to isomorphims of $(f_1^{\alpha}, ..., f_n^{\alpha})$ and $(f_1^{\beta}, ..., f_n^{\beta})$

• Let $(f_1^{\alpha}, ..., f_n^{\alpha})$ be a "model" of such conditions with domain *a* and isomorphisms $\pi_{\alpha} : a \rightarrow a_{\alpha}$

Sac

- Let $(f_1^{\alpha}, ..., f_n^{\alpha})$ be a "model" of such conditions with domain *a* and isomorphisms $\pi_{\alpha} : a \to a_{\alpha}$
- **2** Fix an ultrafilter u on ω_1 which does not contain any countable set

- Let $(f_1^{\alpha}, ..., f_n^{\alpha})$ be a "model" of such conditions with domain *a* and isomorphisms $\pi_{\alpha} : a \to a_{\alpha}$
- 2 Fix an ultrafilter u on ω_1 which does not contain any countable set
- If there is $Y \in u$ such that for $\alpha \in Y$ there are $t, s \in a$ such that

 $X_{lpha} = \{eta \in \omega_1 : \pi_{lpha}(t) \le \pi_{eta}(s)\} \in u$

• I > • = • •

- Let $(f_1^{\alpha}, ..., f_n^{\alpha})$ be a "model" of such conditions with domain *a* and isomorphisms $\pi_{\alpha} : a \to a_{\alpha}$
- 2 Fix an ultrafilter u on ω_1 which does not contain any countable set
- **③** There is $Y \in u$ such that for $\alpha \in Y$ there are $t, s \in a$ such that

$$X_{lpha} = \{eta \in \omega_1 : \pi_{lpha}(t) \leq \pi_{eta}(s)\} \in u$$

• If $\alpha_1, \alpha_2 \in Y$ and $\beta \in X_{\alpha_1} \cap X_{\alpha_1}$, then $\pi_{\alpha_1}(t), \pi_{\alpha_2}(t), \leq \pi_{\beta}(s)$ and so $\pi_{\alpha_1}(t), \pi_{\alpha_2}(t)$ are compatible, hence we get an uncountable branch through *T*, a contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト

If P is c.c.c and adds a new branch through an ω_1 -tree, then there is a c.c.c forcing Q that does not add a new branch through any ω_1 -tree and

 $Q \Vdash \check{P}$ is not c.c.c..

If P is c.c.c and adds a new branch through an ω_1 -tree, then there is a c.c.c forcing Q that does not add a new branch through any ω_1 -tree and

 $Q \Vdash \check{P}$ is not c.c.c..

It is possible to add Martin's axiom without adding new branches through ω_1 -trees which appear in intermediate models.

If P is c.c.c and adds a new branch through an ω_1 -tree, then there is a c.c.c forcing Q that does not add a new branch through any ω_1 -tree and

 $Q \Vdash \check{P}$ is not c.c.c..

It is possible to add Martin's axiom without adding new branches through ω_1 -trees which appear in intermediate models.

Theorem

(Devlin) It is consistent that there is no Kurepa tree and $MA+\neg CH$ holds.

(U. Abraham; S. Todorcevic) "There is a first countable S-space" is consistent with MA+¬CH

(U. Abraham; S. Todorcevic) "There is a first countable S-space" is consistent with MA+¬CH

Theorem

(P.K.) "There is a countably tight compact space with no point of countable character" is consistent with $MA+\neg CH$.

(U. Abraham; S. Todorcevic) "There is a first countable S-space" is consistent with $MA_{+\neg}CH$

Theorem

(P.K.) "There is a countably tight compact space with no point of countable character" is consistent with $MA_{+}\neg CH$. It is consistent that there is are compact spaces K, L and continuous onto map $f : K \rightarrow L$ such that K is first countable and L has no point of countable character.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $f, g: \omega_1 \to \omega_1$

$$"=_{f,g} " = \{\xi : f(\xi) = g(\xi)\}$$
$$">_{f,g} " = \{\xi : f(\xi) > g(\xi)\}$$

We say that $f \leq^* g$ if and only if $>_{f,g}$ is finite and $=_{f,g}$ is co-uncountable. A \leq^* -chain is called strong chain.

Let $f, g: \omega_1 \to \omega_1$

$$" =_{f,g} " = \{\xi : f(\xi) = g(\xi)\}$$
$$" >_{f,g} " = \{\xi : f(\xi) > g(\xi)\}$$

We say that $f \leq^* g$ if and only if $>_{f,g}$ is finite and $=_{f,g}$ is co-uncountable. A \leq^* -chain is called strong chain.

Definition

We say that $(X_{\alpha} : \alpha < \beta)$ is a strong chain of subsets of ω_1 iff for each $\alpha_1 < \alpha_2 < \beta$ we have

$$|X_{\alpha_1} \setminus X_{\alpha_2}| < \omega \& |X_{\alpha_2} \setminus X_{\alpha_1}| > \omega.$$

Definition

Let $f, g: \omega_1 \to \omega_1$

$$" =_{f,g} " = \{\xi : f(\xi) = g(\xi)\}$$
$$" >_{f,g} " = \{\xi : f(\xi) > g(\xi)\}$$

We say that $f \leq^* g$ if and only if $>_{f,g}$ is finite and $=_{f,g}$ is co-uncountable. A \leq^* -chain is called strong chain.

Definition

We say that $(X_{\alpha} : \alpha < \beta)$ is a strong chain of subsets of ω_1 iff for each $\alpha_1 < \alpha_2 < \beta$ we have

$$|X_{\alpha_1} \setminus X_{\alpha_2}| < \omega \& |X_{\alpha_2} \setminus X_{\alpha_1}| > \omega.$$

Fact: The existence of a strong chain of functions $\omega_1 \rightarrow \omega_1$ of length κ is equivalent to the existence of a strong chain of subsets of ω_1 of length κ .

Die	tr Kor	azmic	lor ()
P10	IL VOS	szmic	ier ()

イロト イポト イヨト イヨト ニヨー

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

-

• • • • • • • • • • • • •

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.

Distu	Zara and all	- · · · ·
Plotr	Koszmide	er ()

< ロト < 同ト < ヨト < ヨト

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.

Let $(X_{\alpha} : \alpha < \omega_2)$ be a strong chain of subsets of ω_1 .

• There is $\gamma < \omega_1$ such that $|\{X_{\alpha} \cap \gamma : \alpha \in \omega_2\}| = \omega_2$

→ ∃ →

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.

Let $(X_{\alpha} : \alpha < \omega_2)$ be a strong chain of subsets of ω_1 .

- **1** There is $\gamma < \omega_1$ such that $|\{X_{\alpha} \cap \gamma : \alpha \in \omega_2\}| = \omega_2$
- 2 There is $C \subseteq \omega_2$, $|C| = \omega_2$ and $(\gamma_{\xi})_{\xi < \omega_1}$ such that $X_{\alpha} \cap [\gamma_{\xi}, \gamma_{\xi+1}) \subset X_{\beta} \cap [\gamma_{\xi}, \gamma_{\xi+1})$ for all $\alpha < \beta, \alpha, \beta \in C$ and $\xi < \omega_1$

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.

Let $(X_{\alpha} : \alpha < \omega_2)$ be a strong chain of subsets of ω_1 .

- There is $\gamma < \omega_1$ such that $|\{X_{\alpha} \cap \gamma : \alpha \in \omega_2\}| = \omega_2$
- 2 There is $C \subseteq \omega_2$, $|C| = \omega_2$ and $(\gamma_{\xi})_{\xi < \omega_1}$ such that $X_{\alpha} \cap [\gamma_{\xi}, \gamma_{\xi+1}) \subset X_{\beta} \cap [\gamma_{\xi}, \gamma_{\xi+1})$ for all $\alpha < \beta$, $\alpha, \beta \in C$ and $\xi < \omega_1$
- So CC implies that for any $c : [\omega_2]^2 \to \omega_1$ there is an uncountable $A \subseteq \omega_2$ and $\beta \in \omega_1$ such that $c[[A]^2] \subseteq \beta$.

• $a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_\alpha^p : \alpha \in a_p\} \text{ and } f_\alpha^p : b_p \to 2,$

• • • • • • • • • • • • •

•
$$a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_{\alpha}^p : \alpha \in a_p\} \text{ and } f_{\alpha}^p : b_p \to 2,$$

• $\forall \alpha_1, \alpha_2 \in a_p >_{f_{\alpha_1,\alpha_2}^p} \cap b_p \subseteq c(\alpha_1, \alpha_2)$

•
$$a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_{\alpha}^p : \alpha \in a_p\} \text{ and } f_{\alpha}^p : b_p \to 2,$$

• $\forall \alpha_1, \alpha_2 \in a_p >_{f_{\alpha_1,\alpha_2}^p} \cap b_p \subseteq c(\alpha_1, \alpha_2)$
• $p \leq q \text{ iff } a_p \supseteq a_q, b_p \supseteq b_q, f_{\alpha}^p \supseteq f_{\alpha}^q \text{ for } \alpha \in a_q \text{ and}$
 $\forall \alpha_1, \alpha_2 \in a_q >_{f_{\alpha_1,\alpha_2}^p} \cap b_p =>_{f_{\alpha_1,\alpha_2}^q} \cap b_q$

•
$$a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_{\alpha}^p : \alpha \in a_p\} \text{ and } f_{\alpha}^p : b_p \to 2,$$

• $\forall \alpha_1, \alpha_2 \in a_p \qquad >_{f_{\alpha_1,\alpha_2}^p} \cap b_p \subseteq c(\alpha_1, \alpha_2)$
• $p \leq q \text{ iff } a_p \supseteq a_q, b_p \supseteq b_q, f_{\alpha}^p \supseteq f_{\alpha}^q \text{ for } \alpha \in a_q \text{ and}$
 $\forall \alpha_1, \alpha_2 \in a_q \qquad >_{f_{\alpha_1,\alpha_2}^p} \cap b_p =>_{f_{\alpha_1,\alpha_2}^q} \cap b_q$

•
$$a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_{\alpha}^p : \alpha \in a_p\} \text{ and } f_{\alpha}^p : b_p \to 2,$$

• $\forall \alpha_1, \alpha_2 \in a_p \quad >_{f_{\alpha_1,\alpha_2}^p} \cap b_p \subseteq c(\alpha_1, \alpha_2)$
• $p \leq q \text{ iff } a_p \supseteq a_q, b_p \supseteq b_q, f_{\alpha}^p \supseteq f_{\alpha}^q \text{ for } \alpha \in a_q \text{ and}$
 $\forall \alpha_1, \alpha_2 \in a_q \quad >_{f_{\alpha_1,\alpha_2}^p} \cap b_p =>_{f_{\alpha_1,\alpha_2}^q} \cap b_q$
We will put $X_{\alpha} = \{\beta : f_{\alpha}^p(\beta) = 1, p \in G\}$ for a *P*-generic *G*.

Piotr Koszmider ()

(Jensen) Square implies that there is a c.c.c. forcing which adds a Kurepa tree.

(Jensen) Square implies that there is a c.c.c. forcing which adds a Kurepa tree.

Theorem

(Baumgartner, Shelah) It is consistent that there is a scattered compact space of Cantor-Bendixon height ω_2 and Cantor-Bendixon width ω .

• □ ▶ • □ ▶ • □ ▶ •

(Jensen) Square implies that there is a c.c.c. forcing which adds a Kurepa tree.

Theorem

(Baumgartner, Shelah) It is consistent that there is a scattered compact space of Cantor-Bendixon height ω_2 and Cantor-Bendixon width ω .

Theorem

(P.K.) It is consistent that there is a strong chain of subsets of ω_1 of length ω_2

Image: A matrix and a matrix

(Jensen) Square implies that there is a c.c.c. forcing which adds a Kurepa tree.

Theorem

(Baumgartner, Shelah) It is consistent that there is a scattered compact space of Cantor-Bendixon height ω_2 and Cantor-Bendixon width ω .

Theorem

(P.K.) It is consistent that there is a strong chain of subsets of ω_1 of length ω_2

Theorem

(P.K.) It is consistent that there is a WCG Banach spaces where all operators are in the sequential closure of the linear span of projections from a projectional resolution of the identity

Piotr Koszmider ()

Definition

Let $f, g: \omega_1 \to \omega_1$

$$\geq_{f,g} = \{\xi : f(\xi) \geq g(\xi)\}$$

We say that $f \ll g$ if and only if $\geq_{f,g}$ is finite. A \ll -chain is called very strong chain.

< ロト < 同ト < ヨト < ヨト

Definition

Let $f, g: \omega_1 \to \omega_1$

$$\geq_{f,g} = \{\xi : f(\xi) \geq g(\xi)\}$$

We say that $f \ll g$ if and only if $\geq_{f,g}$ is finite. A \ll -chain is called very strong chain.

Theorem

(CH) there is no c.c.c. forcing which adds a very strong chain. So it cannot be added by an iteration of a σ -closed followed by a c.c.c. forcing.

< ロト < 同ト < ヨト < ヨト

• $0 \in a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_p^{\alpha} : \alpha \in a_p\}, A_p \in [\mathcal{F}]^{<\omega},$ and $f_p^{\alpha} : b_p \to \omega_1$, and for each $\beta \in b_p$ we have $f_p^0(\beta) = 0$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ < ○</p>

- 0 $\in a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_p^{\alpha} : \alpha \in a_p\}, A_p \in [\mathcal{F}]^{<\omega},$ and $f_p^{\alpha} : b_p \to \omega_1$, and for each $\beta \in b_p$ we have $f_p^0(\beta) = 0$
- 2 $\forall \beta \in b_{\rho} \forall \alpha \in a_{\rho} f_{\rho}^{\alpha}(\beta) < \Phi(\beta)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ < ○</p>

- $0 \in a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_p^{\alpha} : \alpha \in a_p\}, A_p \in [\mathcal{F}]^{<\omega},$ and $f_p^{\alpha} : b_p \to \omega_1$, and for each $\beta \in b_p$ we have $f_p^0(\beta) = 0$
- 2 $\forall \beta \in b_{\rho} \forall \alpha \in a_{\rho} f^{\alpha}_{\rho}(\beta) < \Phi(\beta)$

 $f_{\rho}^{\alpha_2}(\beta) \geq f_{\rho}^{\alpha_1}(\beta) + d_{A_{\rho},\beta}(\alpha_1, \alpha_2)$

- $0 \in a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_p^{\alpha} : \alpha \in a_p\}, A_p \in [\mathcal{F}]^{<\omega},$ and $f_p^{\alpha} : b_p \to \omega_1$, and for each $\beta \in b_p$ we have $f_p^0(\beta) = 0$
- 2 $\forall \beta \in b_{\rho} \forall \alpha \in a_{\rho} f^{\alpha}_{\rho}(\beta) < \Phi(\beta)$

$$f_{\rho}^{\alpha_{2}}(\beta) \geq f_{\rho}^{\alpha_{1}}(\beta) + d_{\mathcal{A}_{\rho},\beta}(\alpha_{1},\alpha_{2})$$

• $p \leq q$ iff $a_p \supseteq a_q$, $b_p \supseteq b_q$, $A_p \supseteq A_q$, $f_p^{\alpha} \supseteq f_q^{\alpha}$ for all $\alpha \in a_q$ and

- $0 \in a_p \in [\omega_2]^{<\omega}, b_p \in [\omega_1]^{<\omega}, F_p = \{f_p^{\alpha} : \alpha \in a_p\}, A_p \in [\mathcal{F}]^{<\omega},$ and $f_p^{\alpha} : b_p \to \omega_1$, and for each $\beta \in b_p$ we have $f_p^0(\beta) = 0$

$$f_{\rho}^{\alpha_2}(\beta) \geq f_{\rho}^{\alpha_1}(\beta) + d_{A_{\rho},\beta}(\alpha_1,\alpha_2)$$

(P.K.) It is consistent that here is a very strong chain of functions from ω_1 into ω_1 of length ω_2

Theorem

(C. Brech, P.K.) It is consistent that there is a compact hereditarily separable scattered compact space of Cantor-Bendixon height ω_2 and Cantor-Bendixon width ω .

(P.K.) It is consistent that here is a very strong chain of functions from ω_1 into ω_1 of length ω_2

Theorem

(C. Brech, P.K.) It is consistent that there is a compact hereditarily separable scattered compact space of Cantor-Bendixon height ω_2 and Cantor-Bendixon width ω . It is consistent that there is a Banach space of density ω_2 with no uncountable biorthogonal system.

- E - - E -