Examples concerning iterated forcing II

Piotr Koszmider, piotr.koszmider@gmail.com

Outline

Outline

(1) On Suslin-free forcings, finishing the consistency of MA $+\neg \mathrm{CH}+$ There is no Kurepa tree

Outline

(1) On Suslin-free forcings, finishing the consistency of MA $+\neg \mathrm{CH}+$ There is no Kurepa tree
(2) The question of forcing chains of functions $f_{\xi}: \omega_{1} \rightarrow \omega_{1}$ increasing modulo finite sets

Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + $\neg \mathrm{CH}+$ There is no Kurepa tree

Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + $\neg \mathrm{CH}+$ There is no Kurepa tree

Proof.
Preparatory stage

Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + $\neg \mathrm{CH}+$ There is no Kurepa tree

Proof.

Preparatory stage
(1) First (using an inaccessible cardinal) obtain the consistency of CH + There is no Kurepa tree

Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + $\neg \mathrm{CH}+$ There is no Kurepa tree

Proof.

Preparatory stage
(1) First (using an inaccessible cardinal) obtain the consistency of CH + There is no Kurepa tree
(2) And moreover for any c.c.c. forcing P of cardinality $\omega_{1} P \Vdash$ There is no Kurepa tree.

Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + $\neg \mathrm{CH}+$ There is no Kurepa tree

Proof.

Preparatory stage
(1) First (using an inaccessible cardinal) obtain the consistency of CH + There is no Kurepa tree
(2) And moreover for any c.c.c. forcing P of cardinality $\omega_{1} P \|$ There is no Kurepa tree.
(3) Assume: no c.c.c. forcing P of cardinality ω_{1} forces that there is Kurepa tree

Proof.

Main stage

Proof.

Main stage

(1) Iterate all c.c.c forcings of cardinality ω_{1} which do not add uncountable branches through ω_{1}-trees

Proof.

Main stage

(1) Iterate all c.c.c forcings of cardinality ω_{1} which do not add uncountable branches through ω_{1}-trees
(2) Prove that if P is c.c.c. and adds an uncountable branch through an ω_{1}-tree, then there is Q which is c.c.c., does not add uncountable branches through ω_{1}-trees and

$$
Q \Perp \check{P} \text { is not c.c.c. }
$$

Proof.

Main stage

(1) Iterate all c.c.c forcings of cardinality ω_{1} which do not add uncountable branches through ω_{1}-trees
(2) Prove that if P is c.c.c. and adds an uncountable branch through an ω_{1}-tree, then there is Q which is c.c.c., does not add uncountable branches through ω_{1}-trees and

$$
Q \Vdash \text { P̌ is not c.c.c. }
$$

(0) Prove that if for each $\beta<\alpha$ we have $P_{\beta} \Vdash \dot{Q}_{\beta}$ does not add an uncountable branches through ω_{1}-trees, then P_{α} has this property as well as for each $\beta<\alpha$ we have that P_{β} forces that $P_{[\beta, \alpha)}$ has this property.

Theorem

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_{1}. If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P^{2} is not c.c.c.

Theorem

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_{1}. If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P^{2} is not c.c.c.

Proof.

Theorem

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_{1}. If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P^{2} is not c.c.c.

Proof.

(1) Consider a downward closed subtree $T^{\prime} \subseteq T$ of elements $t \in T$ such that there is $p \in A^{*}$ such that $p \| \check{t} \in \dot{b}$

Theorem

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_{1}. If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P^{2} is not c.c.c.

Proof.

(1) Consider a downward closed subtree $T^{\prime} \subseteq T$ of elements $t \in T$ such that there is $p \in A^{*}$ such that $p \| \breve{t} \in \dot{b}$
(2) There is an order inversing injection $f: T^{\prime} \rightarrow A^{*}$ defined by $f(t)=[\check{t} \in \dot{b}]$ such that incomparable elements in T^{\prime} are send to incompatible conditions in A^{*}

Theorem

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_{1}. If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P^{2} is not c.c.c.

Proof.

(1) Consider a downward closed subtree $T^{\prime} \subseteq T$ of elements $t \in T$ such that there is $p \in A^{*}$ such that $p \| \breve{t} \in \dot{b}$
(2) There is an order inversing injection $f: T^{\prime} \rightarrow A^{*}$ defined by $f(t)=[\check{t} \in \dot{b}]$ such that incomparable elements in T^{\prime} are send to incompatible conditions in A^{*}
(0) Since A^{*} is c.c.c. the image $f\left[T^{\prime}\right]$ is a c.c.c reveresed tree.

Theorem

Suppose that A is a complete c.c.c. Boolean algebra and let T be a tree of height ω_{1}. If A^{*} adds a new branch through T, then A^{*} contains a reversed Souslin tree. In particular P^{2} is not c.c.c.

Proof.

(1) Consider a downward closed subtree $T^{\prime} \subseteq T$ of elements $t \in T$ such that there is $p \in A^{*}$ such that $p \| \check{t} \in \dot{b}$
(2) There is an order inversing injection $f: T^{\prime} \rightarrow A^{*}$ defined by $f(t)=[\check{t} \in \dot{b}]$ such that incomparable elements in T^{\prime} are send to incompatible conditions in A^{*}
(3) Since A^{*} is c.c.c. the image $f\left[T^{\prime}\right]$ is a c.c.c reveresed tree.
(4) As $P \Vdash-\dot{b} \neq \check{c}$ for any branch c of T, we conclude that $f\left[T^{\prime}\right]$ has height ω_{1} and so is a Suslin tree.

Definition

Suppose T is a tree. Then P_{T} consists of finite functions $f: \operatorname{dom}(f) \rightarrow N$ such that $\operatorname{dom}(f) \in[T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Definition

Suppose T is a tree. Then P_{T} consists of finite functions $f: \operatorname{dom}(f) \rightarrow N$ such that $\operatorname{dom}(f) \in[T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Theorem

If T has no uncountable branches then P_{T}^{n} is c.c.c. for each $n \in N$. In particular, P_{T} does not add new uncountable branches.

Definition

Suppose T is a tree. Then P_{T} consists of finite functions $f: \operatorname{dom}(f) \rightarrow N$ such that $\operatorname{dom}(f) \in[T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Theorem

If T has no uncountable branches then P_{T}^{n} is c.c.c. for each $n \in N$. In particular, P_{T} does not add new uncountable branches.

Proof.

(1. Let $\left(f_{1}^{\alpha}, \ldots, f_{n}^{\alpha}\right)$ be elements of P^{n} which form an antichain for $\alpha<\omega_{1}$

Definition

Suppose T is a tree. Then P_{T} consists of finite functions $f: \operatorname{dom}(f) \rightarrow N$ such that $\operatorname{dom}(f) \in[T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Theorem

If T has no uncountable branches then P_{T}^{n} is c.c.c. for each $n \in N$. In particular, P_{T} does not add new uncountable branches.

Proof.

(1) Let $\left(f_{1}^{\alpha}, \ldots, f_{n}^{\alpha}\right)$ be elements of P^{n} which form an antichain for $\alpha<\omega_{1}$
(2) Let $a_{\alpha}=\operatorname{dom}\left(f_{1}^{\alpha}\right) \cup \ldots \cup \operatorname{dom}\left(f_{n}^{\alpha}\right)$, assume they form a Δ-system

Definition

Suppose T is a tree. Then P_{T} consists of finite functions $f: \operatorname{dom}(f) \rightarrow N$ such that $\operatorname{dom}(f) \in[T]^{<\omega}$ and $f^{-1}\{n\}$ are antichains.

Theorem

If T has no uncountable branches then P_{T}^{n} is c.c.c. for each $n \in N$. In particular, P_{T} does not add new uncountable branches.

Proof.

(1) Let $\left(f_{1}^{\alpha}, \ldots, f_{n}^{\alpha}\right)$ be elements of P^{n} which form an antichain for $\alpha<\omega_{1}$
(2) Let $\mathrm{a}_{\alpha}=\operatorname{dom}\left(f_{1}^{\alpha}\right) \cup \ldots \cup \operatorname{dom}\left(f_{n}^{\alpha}\right)$, assume they form a Δ-system
(0) May w.l.o.g. assume that there are isomorphims $\pi_{\alpha, \beta}: a_{\alpha} \rightarrow a_{\beta}$ which lifts up to isomorphims of $\left(f_{1}^{\alpha}, \ldots, f_{n}^{\alpha}\right)$ and $\left(f_{1}^{\beta}, \ldots, f_{n}^{\beta}\right)$
(1) Let $\left(f_{1}^{\alpha}, \ldots, f_{n}^{\alpha}\right)$ be a "model" of such conditions with domain a and isomorphisms $\pi_{\alpha}: a \rightarrow a_{\alpha}$
(1) Let $\left(f_{1}^{\alpha}, \ldots, f_{n}^{\alpha}\right)$ be a "model" of such conditions with domain a and isomorphisms $\pi_{\alpha}: a \rightarrow a_{\alpha}$
(2) Fix an ultrafilter u on ω_{1} which does not contain any countable set
(1) Let $\left(f_{1}^{\alpha}, \ldots, f_{n}^{\alpha}\right)$ be a "model" of such conditions with domain a and isomorphisms $\pi_{\alpha}: a \rightarrow a_{\alpha}$
(2) Fix an ultrafilter u on ω_{1} which does not contain any countable set
(3) There is $Y \in u$ such that for $\alpha \in Y$ there are $t, s \in$ a such that

$$
X_{\alpha}=\left\{\beta \in \omega_{1}: \pi_{\alpha}(t) \leq \pi_{\beta}(s)\right\} \in u
$$

(1) Let $\left(f_{1}^{\alpha}, \ldots, f_{n}^{\alpha}\right)$ be a "model" of such conditions with domain a and isomorphisms $\pi_{\alpha}: a \rightarrow a_{\alpha}$
(2) Fix an ultrafilter u on ω_{1} which does not contain any countable set
(3) There is $Y \in u$ such that for $\alpha \in Y$ there are $t, s \in$ a such that

$$
X_{\alpha}=\left\{\beta \in \omega_{1}: \pi_{\alpha}(t) \leq \pi_{\beta}(s)\right\} \in u
$$

(4) If $\alpha_{1}, \alpha_{2} \in Y$ and $\beta \in X_{\alpha_{1}} \cap X_{\alpha_{1}}$, then $\pi_{\alpha_{1}}(t), \pi_{\alpha_{2}}(t), \leq \pi_{\beta}(s)$ and so $\pi_{\alpha_{1}}(t), \pi_{\alpha_{2}}(t)$ are compatible, hence we get an uncountable branch through T, a contradiction.

Theorem

If P is c.c.c and adds a new branch through an ω_{1}-tree, then there is a c.c.c forcing Q that does not add a new branch through any ω_{1}-tree and

$$
Q \Vdash \breve{P} \text { is not c.c.c.. }
$$

Theorem

If P is c.c.c and adds a new branch through an ω_{1}-tree, then there is a c.c.c forcing Q that does not add a new branch through any ω_{1}-tree and

$$
Q \Perp \check{P} \text { is not c.c.c.. }
$$

It is possible to add Martin's axiom without adding new branches through ω_{1}-trees which appear in intermediate models.

Theorem

If P is c.c.c and adds a new branch through an ω_{1}-tree, then there is a c.c.c forcing Q that does not add a new branch through any ω_{1}-tree and

$$
Q \| \vdash \text { P̌ is not c.c.c.. }
$$

It is possible to add Martin's axiom without adding new branches through ω_{1}-trees which appear in intermediate models.

Theorem

(Devlin) It is consistent that there is no Kurepa tree and $\mathrm{MA}+\neg \mathrm{CH}$ holds.

Theorem

(U. Abraham; S. Todorcevic) "There is a first countable S-space" is consistent with MA+ᄀCH

Theorem

(U. Abraham; S. Todorcevic) "There is a first countable S-space" is consistent with $\mathrm{MA}+\neg \mathrm{CH}$

Theorem

(P.K.) "There is a countably tight compact space with no point of countable character" is consistent with $\mathrm{MA}+\neg \mathrm{CH}$.

Theorem

(U. Abraham; S. Todorcevic) "There is a first countable S-space" is consistent with $\mathrm{MA}+\neg \mathrm{CH}$

Theorem

(P.K.) "There is a countably tight compact space with no point of countable character" is consistent with $\mathrm{MA}+\mathrm{CH}$. It is consistent that there is are compact spaces K, L and continuous onto map $f: K \rightarrow L$ such that K is first countable and L has no point of countable character.

Definition

Let $f, g: \omega_{1} \rightarrow \omega_{1}$

$$
\begin{aligned}
& "=_{f, g} "=\{\xi: f(\xi)=g(\xi)\} \\
& ">_{f, g} "=\{\xi: f(\xi)>g(\xi)\}
\end{aligned}
$$

We say that $f \leq^{*} g$ if and only if $>_{f, g}$ is finite and $=_{f, g}$ is co-uncountable. A \leq^{*}-chain is called strong chain.

Definition

Let $f, g: \omega_{1} \rightarrow \omega_{1}$

$$
\begin{aligned}
& "=_{f, g} "=\{\xi: f(\xi)=g(\xi)\} \\
& ">_{f, g} "=\{\xi: f(\xi)>g(\xi)\}
\end{aligned}
$$

We say that $f \leq^{*} g$ if and only if $>_{f, g}$ is finite and $=_{f, g}$ is co-uncountable. A \leq^{*}-chain is called strong chain.

Definition

We say that $\left(X_{\alpha}: \alpha<\beta\right)$ is a strong chain of subsets of ω_{1} iff for each $\alpha_{1}<\alpha_{2}<\beta$ we have

$$
\left|X_{\alpha_{1}} \backslash X_{\alpha_{2}}\right|<\omega \&\left|X_{\alpha_{2}} \backslash X_{\alpha_{1}}\right|>\omega .
$$

Definition

Let $f, g: \omega_{1} \rightarrow \omega_{1}$

$$
\begin{aligned}
& "=_{f, g} "=\{\xi: f(\xi)=g(\xi)\} \\
& ">_{f, g} "=\{\xi: f(\xi)>g(\xi)\}
\end{aligned}
$$

We say that $f \leq^{*} g$ if and only if $>_{f, g}$ is finite and $=_{f, g}$ is co-uncountable. $A \leq^{*}$-chain is called strong chain.

Definition

We say that $\left(X_{\alpha}: \alpha<\beta\right)$ is a strong chain of subsets of ω_{1} iff for each $\alpha_{1}<\alpha_{2}<\beta$ we have

$$
\left|X_{\alpha_{1}} \backslash X_{\alpha_{2}}\right|<\omega \&\left|X_{\alpha_{2}} \backslash X_{\alpha_{1}}\right|>\omega
$$

Fact: The existence of a strong chain of functions $\omega_{1} \rightarrow \omega_{1}$ of length κ is equivalent to the existence of a strong chain of subsets of ω_{1} of length κ.

Theorem

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Theorem

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.

Theorem

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.

Let $\left(X_{\alpha}: \alpha<\omega_{2}\right)$ be a strong chain of subsets of ω_{1}.
(1) There is $\gamma<\omega_{1}$ such that $\left|\left\{X_{\alpha} \cap \gamma: \alpha \in \omega_{2}\right\}\right|=\omega_{2}$

Theorem

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.

Let ($X_{\alpha}: \alpha<\omega_{2}$) be a strong chain of subsets of ω_{1}.
(1) There is $\gamma<\omega_{1}$ such that $\left|\left\{X_{\alpha} \cap \gamma: \alpha \in \omega_{2}\right\}\right|=\omega_{2}$
(2) There is $C \subseteq \omega_{2},|C|=\omega_{2}$ and $\left(\gamma_{\xi}\right)_{\xi<\omega_{1}}$ such that $X_{\alpha} \cap\left[\gamma_{\xi}, \gamma_{\xi+1}\right) \subset X_{\beta} \cap\left[\gamma_{\xi}, \gamma_{\xi+1}\right)$ for all $\alpha<\beta, \alpha, \beta \in C$ and $\xi<\omega_{1}$

Theorem

CH or CC (Chang's Conjecture) imply that there are no strong chains. So there is no ZFC c.c.c. notion of forcing which adds a strong chain.

Proof.

Let ($X_{\alpha}: \alpha<\omega_{2}$) be a strong chain of subsets of ω_{1}.
(1) There is $\gamma<\omega_{1}$ such that $\left|\left\{X_{\alpha} \cap \gamma: \alpha \in \omega_{2}\right\}\right|=\omega_{2}$
(2) There is $C \subseteq \omega_{2},|C|=\omega_{2}$ and $\left(\gamma_{\xi}\right)_{\xi<\omega_{1}}$ such that $X_{\alpha} \cap\left[\gamma_{\xi}, \gamma_{\xi+1}\right) \subset X_{\beta} \cap\left[\gamma_{\xi}, \gamma_{\xi+1}\right)$ for all $\alpha<\beta, \alpha, \beta \in C$ and $\xi<\omega_{1}$
(3) CC implies that for any $c:\left[\omega_{2}\right]^{2} \rightarrow \omega_{1}$ there is an uncountable $A \subseteq \omega_{2}$ and $\beta \in \omega_{1}$ such that $c\left[[A]^{2}\right] \subseteq \beta$.

Forcing for adding strong chain: First add appropriate $c:\left[\omega_{2}\right]^{2} \rightarrow \omega_{1}$ by a σ-closed forcing. Then force with P consisting of $p=\left(a_{p}, b_{p}, f_{p}\right)$ where

Forcing for adding strong chain: First add appropriate $c:\left[\omega_{2}\right]^{2} \rightarrow \omega_{1}$ by a σ-closed forcing. Then force with P consisting of $p=\left(a_{p}, b_{p}, f_{p}\right)$ where
(1) $a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{\alpha}^{p}: \alpha \in a_{p}\right\}$ and $f_{\alpha}^{p}: b_{p} \rightarrow 2$,

Forcing for adding strong chain: First add appropriate $c:\left[\omega_{2}\right]^{2} \rightarrow \omega_{1}$ by a σ-closed forcing. Then force with P consisting of $p=\left(a_{p}, b_{p}, f_{p}\right)$ where
(1) $a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{\alpha}^{p}: \alpha \in a_{p}\right\}$ and $f_{\alpha}^{p}: b_{p} \rightarrow 2$,
(2) $\forall \alpha_{1}, \alpha_{2} \in a_{p} \quad>_{f_{1}, \alpha_{2}}^{p} \cap b_{p} \subseteq c\left(\alpha_{1}, \alpha_{2}\right)$

Forcing for adding strong chain: First add appropriate $c:\left[\omega_{2}\right]^{2} \rightarrow \omega_{1}$ by a σ-closed forcing. Then force with P consisting of $p=\left(a_{p}, b_{p}, f_{p}\right)$ where
(1) $a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{\alpha}^{p}: \alpha \in a_{p}\right\}$ and $f_{\alpha}^{p}: b_{p} \rightarrow 2$,
(2) $\forall \alpha_{1}, \alpha_{2} \in a_{p} \quad>_{f_{\alpha_{1}, \alpha_{2}}^{p}}^{p} \cap b_{p} \subseteq c\left(\alpha_{1}, \alpha_{2}\right)$
(3) $p \leq q$ iff $a_{p} \supseteq a_{q}, b_{p} \supseteq b_{q}, f_{\alpha}^{p} \supseteq f_{\alpha}^{q}$ for $\alpha \in a_{q}$ and $\forall \alpha_{1}, \alpha_{2} \in a_{q} \quad>_{f_{\alpha_{1}, \alpha_{2}}^{p}} \cap b_{p}=>_{f_{\alpha_{1}, \alpha_{2}}^{q}} \cap b_{q}$

Forcing for adding strong chain: First add appropriate $c:\left[\omega_{2}\right]^{2} \rightarrow \omega_{1}$ by a σ-closed forcing. Then force with P consisting of $p=\left(a_{p}, b_{p}, f_{p}\right)$ where
(1) $a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{\alpha}^{p}: \alpha \in a_{p}\right\}$ and $f_{\alpha}^{p}: b_{p} \rightarrow 2$,
(2) $\forall \alpha_{1}, \alpha_{2} \in a_{p} \quad>_{f_{\alpha_{1}, \alpha_{2}}^{p}} \cap b_{p} \subseteq c\left(\alpha_{1}, \alpha_{2}\right)$
(3) $p \leq q$ iff $a_{p} \supseteq a_{q}, b_{p} \supseteq b_{q}, f_{\alpha}^{p} \supseteq f_{\alpha}^{q}$ for $\alpha \in a_{q}$ and

$$
\forall \alpha_{1}, \alpha_{2} \in a_{q} \quad>_{f_{\alpha_{1}, \alpha_{2}}^{p}} \cap b_{p}=>_{f_{\alpha_{1}, \alpha_{2}}^{q}} \cap b_{q}
$$

Forcing for adding strong chain: First add appropriate $c:\left[\omega_{2}\right]^{2} \rightarrow \omega_{1}$ by a σ-closed forcing. Then force with P consisting of $p=\left(a_{p}, b_{p}, f_{p}\right)$ where
(1) $a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{\alpha}^{p}: \alpha \in a_{p}\right\}$ and $f_{\alpha}^{p}: b_{p} \rightarrow 2$,
(2) $\forall \alpha_{1}, \alpha_{2} \in a_{p} \quad>_{f_{\alpha_{1}, \alpha_{2}}^{p}}^{p} \cap b_{p} \subseteq c\left(\alpha_{1}, \alpha_{2}\right)$
(3) $p \leq q$ iff $a_{p} \supseteq a_{q}, b_{p} \supseteq b_{q}, f_{\alpha}^{p} \supseteq f_{\alpha}^{q}$ for $\alpha \in a_{q}$ and

$$
\forall \alpha_{1}, \alpha_{2} \in a_{q} \quad>_{f_{\alpha_{1}, \alpha_{2}}} \cap b_{p}=>_{f_{\alpha_{1}, \alpha_{2}}^{q}} \cap b_{q}
$$

We will put $X_{\alpha}=\left\{\beta: f_{\alpha}^{p}(\beta)=1, p \in G\right\}$ for a P-generic G.

Theorem

(Jensen) Square implies that there is a c.c.c. forcing which adds a Kurepa tree.

Theorem

(Jensen) Square implies that there is a c.c.c. forcing which adds a Kurepa tree.

Theorem
 (Baumgartner, Shelah) It is consistent that there is a scattered compact space of Cantor-Bendixon height ω_{2} and Cantor-Bendixon width ω.

Theorem

(Jensen) Square implies that there is a c.c.c. forcing which adds a Kurepa tree.

Theorem
 (Baumgartner, Shelah) It is consistent that there is a scattered compact space of Cantor-Bendixon height ω_{2} and Cantor-Bendixon width ω.

Theorem

(P.K.) It is consistent that there is a strong chain of subsets of ω_{1} of length ω_{2}

Theorem

(Jensen) Square implies that there is a c.c.c. forcing which adds a Kurepa tree.

Theorem
 (Baumgartner, Shelah) It is consistent that there is a scattered compact space of Cantor-Bendixon height ω_{2} and Cantor-Bendixon width ω.

Theorem
 (P.K.) It is consistent that there is a strong chain of subsets of ω_{1} of length ω_{2}

Theorem

(P.K.) It is consistent that there is a WCG Banach spaces where all operators are in the sequential closure of the linear span of projections from a projectional resolution of the identity

Definition

Let $f, g: \omega_{1} \rightarrow \omega_{1}$

$$
\geq f, g=\{\xi: f(\xi) \geq g(\xi)\}
$$

We say that $f \ll g$ if and only if $\geq_{f, g}$ is finite. A \ll-chain is called very strong chain.

Definition

Let $f, g: \omega_{1} \rightarrow \omega_{1}$

$$
\geq_{f, g}=\{\xi: f(\xi) \geq g(\xi)\}
$$

We say that $f \ll g$ if and only if $\geq_{f, g}$ is finite. $\mathrm{A} \ll$-chain is called very strong chain.

Theorem

(CH) there is no c.c.c. forcing which adds a very strong chain. So it cannot be added by an iteration of a σ-closed followed by a c.c.c. forcing.

Forcing by conditions $p=\left(a_{p}, b_{p}, F_{p}, A_{p}\right)$, where
(1) $0 \in a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{p}^{\alpha}: \alpha \in a_{p}\right\}, A_{p} \in[\mathcal{F}]^{<\omega}$, and $f_{p}^{\alpha}: b_{p} \rightarrow \omega_{1}$, and for each $\beta \in b_{p}$ we have $f_{p}^{0}(\beta)=0$

Forcing by conditions $p=\left(a_{p}, b_{p}, F_{p}, A_{p}\right)$, where
(1) $0 \in a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{p}^{\alpha}: \alpha \in a_{p}\right\}, A_{p} \in[\mathcal{F}]^{<\omega}$, and $f_{p}^{\alpha}: b_{p} \rightarrow \omega_{1}$, and for each $\beta \in b_{p}$ we have $f_{p}^{0}(\beta)=0$
(2) $\forall \beta \in b_{p} \forall \alpha \in a_{p} f_{p}^{\alpha}(\beta)<\Phi(\beta)$

Forcing by conditions $p=\left(a_{p}, b_{p}, F_{p}, A_{p}\right)$, where
(1) $0 \in a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{p}^{\alpha}: \alpha \in a_{p}\right\}, A_{p} \in[\mathcal{F}]^{<\omega}$, and $f_{p}^{\alpha}: b_{p} \rightarrow \omega_{1}$, and for each $\beta \in b_{p}$ we have $f_{p}^{0}(\beta)=0$
(2) $\forall \beta \in b_{p} \forall \alpha \in a_{p} f_{p}^{\alpha}(\beta)<\Phi(\beta)$
(3) $\forall \beta \in b_{p} \forall \alpha_{1}<\alpha_{2} ; \alpha_{1}, \alpha_{2} \in a_{p}$, if $d_{A_{p}, \beta}\left(\alpha_{1}, \alpha_{2}\right) \neq 0$, then

$$
f_{p}^{\alpha_{2}}(\beta) \geq f_{p}^{\alpha_{1}}(\beta)+d_{A_{p}, \beta}\left(\alpha_{1}, \alpha_{2}\right)
$$

Forcing by conditions $p=\left(a_{p}, b_{p}, F_{p}, A_{p}\right)$, where
(1) $0 \in a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{p}^{\alpha}: \alpha \in a_{p}\right\}, A_{p} \in[\mathcal{F}]^{<\omega}$, and $f_{p}^{\alpha}: b_{p} \rightarrow \omega_{1}$, and for each $\beta \in b_{p}$ we have $f_{p}^{0}(\beta)=0$
(2) $\forall \beta \in b_{p} \forall \alpha \in a_{p} f_{p}^{\alpha}(\beta)<\Phi(\beta)$
(3) $\forall \beta \in b_{p} \forall \alpha_{1}<\alpha_{2} ; \alpha_{1}, \alpha_{2} \in a_{p}$, if $d_{A_{p}, \beta}\left(\alpha_{1}, \alpha_{2}\right) \neq 0$, then

$$
f_{p}^{\alpha_{2}}(\beta) \geq f_{p}^{\alpha_{1}}(\beta)+d_{A_{p}, \beta}\left(\alpha_{1}, \alpha_{2}\right)
$$

(4) $p \leq q$ iff $a_{p} \supseteq a_{q}, b_{p} \supseteq b_{q}, A_{p} \supseteq A_{q}, f_{p}^{\alpha} \supseteq f_{q}^{\alpha}$ for all $\alpha \in a_{q}$ and

Forcing by conditions $p=\left(a_{p}, b_{p}, F_{p}, A_{p}\right)$, where
(1) $0 \in a_{p} \in\left[\omega_{2}\right]^{<\omega}, b_{p} \in\left[\omega_{1}\right]^{<\omega}, F_{p}=\left\{f_{p}^{\alpha}: \alpha \in a_{p}\right\}, A_{p} \in[\mathcal{F}]^{<\omega}$, and $f_{p}^{\alpha}: b_{p} \rightarrow \omega_{1}$, and for each $\beta \in b_{p}$ we have $f_{p}^{0}(\beta)=0$
(2) $\forall \beta \in b_{p} \forall \alpha \in a_{p} f_{p}^{\alpha}(\beta)<\Phi(\beta)$
(3) $\forall \beta \in b_{p} \forall \alpha_{1}<\alpha_{2} ; \alpha_{1}, \alpha_{2} \in a_{p}$, if $d_{A_{p}, \beta}\left(\alpha_{1}, \alpha_{2}\right) \neq 0$, then

$$
f_{p}^{\alpha_{2}}(\beta) \geq f_{p}^{\alpha_{1}}(\beta)+d_{A_{p}, \beta}\left(\alpha_{1}, \alpha_{2}\right)
$$

(4) $p \leq q$ iff $a_{p} \supseteq a_{q}, b_{p} \supseteq b_{q}, A_{p} \supseteq A_{q}, f_{p}^{\alpha} \supseteq f_{q}^{\alpha}$ for all $\alpha \in a_{q}$ and
(5) $\forall \beta \in b_{p}-b_{q} \forall \alpha_{1}<\alpha_{2} ; \alpha_{1}, \alpha_{2} \in a_{q} \quad f_{p}^{\alpha_{2}}(\beta)>f_{p}^{\alpha_{1}}(\beta)$

Theorem

(P.K.) It is consistent that here is a very strong chain of functions from ω_{1} into ω_{1} of length ω_{2}

Theorem

(C. Brech, P.K.) It is consistent that there is a compact hereditarily separable scattered compact space of Cantor-Bendixon height ω_{2} and Cantor-Bendixon width ω.

Theorem

(P.K.) It is consistent that here is a very strong chain of functions from ω_{1} into ω_{1} of length ω_{2}

Theorem

(C. Brech, P.K.) It is consistent that there is a compact hereditarily separable scattered compact space of Cantor-Bendixon height ω_{2} and Cantor-Bendixon width ω. It is consistent that there is a Banach space of density ω_{2} with no uncountable biorthogonal system.

